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Abstract
The analytic expression of the time evolution wavefunction of the two-
dimensional harmonic oscillator with time-dependent mass and frequency in
a static magnetic field is obtained using an operator-algebraic method slightly
different from the usual Lie algebraic technique. The evolution operator
of the one-dimensional harmonic oscillator with time-dependent mass and
frequency is established first by forming an operator differential equation with
the su(1, 1) Lie algebra, which is deduced from the time-dependent linear
unitary transformation for boson operators (a, a†), and then by comparing this
operator equation with the time evolution equation of the one-dimensional
oscillator.

PACS numbers: 03.65.Fd, 03.65.Ge

In a recent paper, Maamache et al [1] solved the time-dependent Schrödinger equation for
the two-dimensional harmonic oscillator with time-dependent mass and frequency in the
presence of a static magnetic field. The authors made use of the Lewis and Riesenfeld (LR)
[2] invariant theory to find the wavefunction of the system, and revealed that the different steps
adopted in [3] to get the final results are not correct. Because of the intrinsic mathematical
interest and various applications to many areas of physics there are several other techniques
to treat this problem besides the LR invariant method, such as the canonical transformation
method [4], the Lie algebraic technique [5, 6], the path integral approach [7, 8] and the
direct quantum mechanical treatment [9]. In this paper we shall take an alternative operator-
algebraic approach different from the usual Lie algebraic method to study the same system as
in [1] and [3]. Evaluation of the time evolution wavefunction of the system results essentially
in performing calculations of the matrix elements for the rotation operator about the z-axial
direction and for the evolution operator of the one-dimensional harmonic oscillator with
time-dependent mass and frequency. The former matrix element is obtained by virtue of the
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decomposition method of the su(2) Lie algebra, while for the latter its time evolution operator
is established first by forming an operator differential equation with the su(1, 1) Lie algebra,
which is deduced from the time-dependent linear unitary transformation for boson operators
(a, a†) [10], and then by comparing this operator equation with the time evolution equation of
the one-dimensional oscillator.

The Hamiltonian we consider here is of the form [1, 3]

H(t) =
2∑

j=1

Hj (t) +
1

2
ωc(t)Lz, (1)

where

Hj (t) = p2
j

2M(t)
+

1

2
M(t)�2(t)q2

j (2)

is the Hamiltonian of a x- or y-component oscillator with time-dependent mass and frequency.
The electromagnetic potential A = [−(B0/2)q2, (B0/2)q1, 0] is obtained in a choice of the
Coulomb gauge ∇.A = 0; ω(t), ωc(t) = eB0/M(t)c and �2(t) = ω2(t) + ω2

c (t)/4 are the
oscillating, Larmor and modulate frequencies, respectively; and Lz is the angular momentum
in the axial direction.

It is known that
∑

Hj (t) commutes with Lz [3]; this will facilitate the treatment of the
time evolution equation ih̄U̇ (t) = H(t)U(t) of the system (1). In terms of the Lie
algebraic structure theory [11, 12] if we factor the evolution operator as the product
U(t) = Rz(t)U1(t)U2(t), the time evolution equation just mentioned will be decomposed
into the following three equations:

ih̄Ṙz(t) = 1
2ωc(t)LzRz(t), (3)

ihU̇j (t) = Hj (t)Uj (t), (j = 1, 2) (4)

subject to the initial conditions Rz(0) = 1 and Uj (0) = 1, where the dot means the time
derivative. From equation (3), it follows that Rz(t), which is called a rotation operator, is

Rz(t) = exp
[
− i

h̄
ξc(t)Lz

]
, (5)

where ξc(t) = ∫ t

0 dt ′ωc(t
′)/2 and Lz = q1p2 − q2p1 = −ih̄

(
a
†
1a2 − a1a

†
2

)
. It is apparent that

equation (4) presents the time evolution equation of the subsystem (2), while Uj (t) plays the
role of a time evolution operator to the time-dependent harmonic oscillator with mass M(t)

and frequency �(t). For the moment, we ignore the subscript of Uj (t) since both the x- and
y-component oscillators are equivalent. Equation (4) in the particle number representation
may then be written as

U̇(t)U†(t) = − i

h̄
[η(t)(K+ + K−) + κ(t)K0], (6)

where

K+ = 1
2 (a†)2, K− = 1

2a2, K0 = 1
4 (aa† + a†a) (7)

construct a su(1, 1) Lie algebra with the closed commutation relations [K+,K−] =
−2K0, [K0,K±] = ±K±, and the functions η(t) and κ(t) are defined by

η(t) = h̄

2

[
M(t)�2(t)

mω0
− mω0

M(t)

]
, κ(t) = h̄

[
M(t)�2(t)

mω0
+

mω0

M(t)

]
. (8)
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Consider the time-dependent linear unitary transformation for boson operators
(a, a†) [10]

U ′(t)aU ′†(t) = u(t)a + v(t)a†,

U ′(t)a†U ′†(t) = u∗(t)a† + v∗(t)a,
(9)

where U ′(t) is the time-dependent unitary operator and u(t) and v(t) are the complex
transformation coefficients which satisfy the canonical condition

|u(t)|2 − |v(t)|2 = 1, (10)

and the creation and annihilation operators a† and a are time independent in the Schrödinger
picture. Now differentiating equation (9) with respect to time and using equation (9) and the
unitarity U ′†U ′ = U ′U ′† = 1, U ′U̇ ′† = −U̇ ′U ′†, we obtain

u[U̇ ′U ′†, a] + v[U̇ ′U ′†, a†] = u̇a + v̇a†,

u∗[U̇ ′U ′†, a†] + v∗[U̇ ′U ′†, a] = u̇∗a† + v̇∗a.
(11)

Multiplying equation (11) by u, v properly and their conjugate complex functions and using
condition (10), we have

[U̇ ′U ′†, a] = g(t)a − f (t)a†,

[U̇ ′U ′†, a†] = g∗(t)a† − f ∗(t)a,
(12)

where the functions f (t) and g(t) are defined by

f (t) = v(t)u̇∗(t) − u∗(t)v̇(t), g(t) = u∗(t)u̇(t) − v(t)v̇∗(t) = −g∗(t). (13)

Again, properly multiplying equation (12) by the operators a†, a and using the commutation
relation [a, a†] = 1, we obtain

U̇ ′U ′† − aU̇ ′U ′†a† + a†U̇ ′U ′†a = −f (a†)2 + f ∗a2 + g(aa† + a†a). (14)

It can be checked that the product operator U̇ ′U ′† that satisfies the above equation should take
the form

U̇ ′(t)U ′†(t) = f (t)K+ − f ∗(t)K− − 2g(t)K0. (15)

In order to solve this operator equation, introducing the usual 2 × 2 matrix representation
of su(1, 1),

K+ =
(

0 1
0 0

)
, K− =

(
0 0

−1 0

)
, K0 = 1

2

(
1 0
0 −1

)
, (16)

substituting them into equation (15) and adopting the decomposition technique proposed by
Fisher et al [13], we find

U̇ ′(t)U ′†(t) =
(

g∗ f

f ∗ g

)
=

(
u̇∗ −v̇

−v̇∗ u̇

)(
u v

v∗ u∗

)

= ∂

∂t

[(
1 −v/u

0 1

)(
1/u 0

0 u

) (
1 0

−v∗/u 1

)]

×
[(

1 0
v∗/u 1

) (
u 0
0 1/u

) (
1 v/u

0 1

)]
. (17)

Thus a comparison between both the extreme sides of equation (17) gives the normal-order
and antinormal-order expansions of U ′(t) and U ′†(t), respectively, by

U ′(t) = exp

[
−v(t)

u(t)
K+

]
exp[−2 ln u(t)K0] exp

[
v∗(t)
u(t)

K−

]
, (18)
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U ′†(t) = exp

[
−v∗(t)

u(t)
K−

]
exp[2 ln u(t)K0] exp

[
v(t)

u(t)
K+

]
. (19)

On account of the same algebraic structure and physical meaning of equations (15) and (6),
U ′(t) may be regarded as identical with U(t). Note that the time evolution operators U1(t)

and U2(t) should obviously possess the completely same coefficients u(t) and v(t) except
that their generators (K±,0) are expressed in terms of boson operators a1

(
a
†
1

)
and a2

(
a
†
2

)
of

different modes.
Concerning the connection between the transformation coefficients u(t), v(t) and the

oscillator parameters M(t),�(t), let us equate the right-hand sides of equations (15) and (6),
which leads to the relations

f (t) = − i

h̄
η(t), g(t) = i

2h̄
κ(t). (20)

Further using equation (13), a set of coupled differential equations for u(t) and v(t) is derived
by

u̇(t) = i

h̄

[
κ(t)

2
u(t) − η(t)v(t)

]
, v̇(t) = i

h̄

[
η(t)u(t) − κ(t)

2
v(t)

]
. (21)

To solve these complex equations, it is more convenient to decompose u and v as u = u1 + iu2

and v = v1 + iv2, and introducing x1,2 = u1 ± v1 and x3,4 = u2 ± v2, we have

ẋ1(t) = −M(t)�2(t)

mω0
x4(t), ẋ2(t) = − mω0

M(t)
x3(t),

ẋ3(t) = M(t)�2(t)

mω0
x2(t), ẋ4(t) = mω0

M(t)
x1(t).

(22)

Besides, defining the new variables y1 = x4/x1 and y2 = x3/x2, converting equation (22) into
the nonlinear equations of y1,2, and making the following Riccati transformations:

y1(t) = − mω0

M(t)�2(t)

d ln Z1(t)

dt
, y2 = −M(t)

mω0

d ln Z2(t)

dt
, (23)

the second-order differential equations of the functions Zj are then derived by

Z̈1(t) −
[
Ṁ(t)

M(t)
+

2�̇(t)

�(t)

]
Ż1(t) + �2(t)Z1(t) = 0, (24)

Z̈2(t) +
Ṁ(t)

M(t)
Ż2(t) + �2(t)Z2(t) = 0, (25)

with the initial conditions Zj(0) = 1 and Żj (0) = 0 (j=1,2). Finally, we find the solution of
equation (21) in the form

u(t) = 1

2

{
Z1(t) + Z2(t) + i

[
1

mω0

∫ t

0
dt ′M(t ′)�2(t ′)Z2(t

′) + mω0

∫ t

0
dt ′

Z1(t
′)

M(t ′)

]}
,

v(t) = 1

2

{
Z1(t) − Z2(t) + i

[
1

mω0

∫ t

0
dt ′M(t ′)�2(t ′)Z2(t

′) − mω0

∫ t

0
dt ′

Z1(t
′)

M(t ′)

]}
.

(26)

We are now in a position to determine the time evolution wavefunction. Assuming that the
external magnetic field and the interaction turn on for a two-dimensional harmonic oscillator
with constant mass and frequency at time t = 0, that is, starting from an initial two-mode
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particle number state |n1, n2〉, the time evolution wavefunction of the considered system at
time t then becomes

�n1n2(q1, q2, t) =
∑

m1m2;l1l2
Rm1m2;l1l2(t)Ml1l2;n1n2(t)ψm1m2(q1, q2), (27)

where ψm1m2(q1, q2) = ∏2
j ϕmj

(qj ) with ϕmj
(qj ) = 〈qj |mj 〉 = [ξ/(2mj mj !π1/2)]1/2

(−1)mj ξ−mj exp
(
ξ 2q2

j

/
2
)
dmj exp

( − ξ 2q2
j

)/(
dq

mj

j

)
being the eigenfunctions of a simple

harmonic oscillator in which ξ ≡ mω0/h̄.
The matrix element of the rotation operator Rz(t) is now given by

Rm1m2;l1l2(t) = 〈m1,m2| exp[−ξc(t)(J+ − J−)]|l1, l2〉
= 〈m1,m2| exp[− tan ξc(t)J+] exp[−2 ln cos ξc(t)J0] exp[tan ξc(t)J−]|l1, l2〉

=
[

1 − sin ξc(t)

cos ξc(t)

]l1
[

cos2 ξc(t) + sin ξc(t)

cos ξc(t)

]l2

δm1l1δm2l2 , (28)

where

J+ = a
†
1a2, J− = a1a

†
2, J0 = 1

2

(
a
†
1a1 − a

†
2a2

)
(29)

are the generators of the su(2) Lie algebra realized by two-mode boson operators a1(a
†
1) and

a2
(
a
†
2

)
, and they satisfy the closed commutation relations [J+, J−] = 2J0, [J0, J±] = ±J±.

Here, from the second step to the third in equation (28) we have used the Baker–Campbell–
Hausdorff decomposition formula [14].

By analogy to the calculation procedure for matrix elements of the squeezing operator in
quantum optics [15], for the evolution operator U1(t)U2(t), using equation (18) we have

Ml1l2;n1n2(t) = 〈l1|U1(t)|n1〉〈l2|U2(t)|n2〉

=




(−1)(l1+l2)/2(
l1
2

)
!
(

n1
2

)
!
(

l2
2

)
!
(

n2
2

)
!

(l1!n1!l2!n2!)1/2

u

( v

2u

)(l1+l2)/2
(

v∗

2u

)(n1+n2)/2

×F

(
− l1

2
,−n1

2
,

1

2
,− 1

|v|2
)

F

(
− l2

2
,−n2

2
,

1

2
,− 1

|v|2
)

,

for l1, n1 and l2, n2 even,

(−1)(l1+l2)/2−1(
l1−1

2

)
!
(

n1−1
2

)
!
(

l2−1
2

)
!
(

n2−1
2

)
!

(l1!n1!l2!n2!)1/2

u3

( v

2u

)(l1+l2)/2−1
(

v∗

2u

)(n1+n2)/2−1

×F

(
− l1 − 1

2
,−n1 − 1

2
,

3

2
,− 1

|v|2
)

F

(
− l2 − 1

2
,−n2 − 1

2
,

3

2
,− 1

|v|2
)

,

for l1, n1 and l2, n2 odd,

0, otherwise,

(30)

where F(a, b, c, x) is the hypergeometric function.
It is seen that the evolution wavefunction is far from a trivial form even if in the special case.

For example, for the two-dimensional harmonic oscillator with a constant mass and frequency
in a static magnetic field we have M(t) ≡ m,ω(t) ≡ ω0, ωc(t) = eB0/(mc) ≡ ωc0, and
�(t) = (

ω2
0 + ω2

c0/4
)1/2 ≡ �0. It turns out to be ξc = ωc0t/2, Z1 = Z2 = cos �0t , and

u(t) = cos �0t +
i(�2

0 + ω2
0)

2�0ω0
sin �0t,

v(t) = iω2
c0

8�0ω0
sin �0t,

(31)
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from which it follows that

�n1n2(q1, q2, t) =
∑

m1,m2,r,s

(m1!m2!n1!n2!)1/2

r!s!(n1 − 2r)!(n2 − 2s)![(m1 − n1)/2 + r]![(m2 − n2)/2 + s]!

×
[

1 − sin(ωc0t/2)

cos(ωc0t/2)

]m1
[

cos2(ωc0t/2) + sin(ωc0t/2)

cos(ωc0t/2)

]m2

×
[
−ω4

c0 sin2 �0t

256�2
0ω

2
0

]r+s [
−i

ω2
c0 sin �0t

16�0ω0

](m1+m2−n1−n2)/2

×
[

cos �0t + i
(�2

0 + ω2
0) sin �0t

2�0ω0

]−(m1+m2+n1+n2+2)/2

ψm1m2(q1, q2). (32)

If the magnetic field vanishes, we then obtain the stationary state wavefunction
�n1n2(q1, q2, t) = exp[−i(n1 + n2 + 1)ω0t]ψn1n2(q1, q2) of the two decoupled harmonic
oscillators.

In conclusion, we have obtained the exact analytical expressions of the time evolution
operator and the evolution wavefunction of the two-dimensional harmonic oscillator with
time-dependent mass and frequency in a static magnetic field using the alternative operator-
algebraic method. In contrast with the usual Lie algebraic approach [5, 6, 11, 12], the
two major advantages of this method are that, first, there is no need to solve many sets of
parameter equations and, second, the time evolution operator and evolution wavefunction can
be formulated analytically in terms of the transformation coefficients u(t) and v(t). Once
the standard second-order differential equations (24) and (25) are solved and the integrals in
equation (26) are carried out, the explicit expressions of the time evolution wavefunction can
be straightforwardly written.
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